При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большим числом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.
Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ - в исследовании связи.
Название кластерный анализ происходит от английского слова cluster - гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа - разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней.
Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m - целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.
Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией.
Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы.
Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их компактными и наглядными.
Как и любой другой метод, кластерный анализ имеет определенные недостатки и ограничения: В частности, состав и количество кластеров зависит от выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой совокупности каких-либо значений кластеров.
Факторный анализ — группа методов многомерного статистического анализа, которые позволяют представить в компактной форме обобщенную информацию о структуре связей между наблюдаемыми признаками изучаемого социального объекта на основе выделения некоторых скрытых, непосредственно не наблюдаемых факторов.
Анализ факторный в его классическом варианте разработан для данных, полученных при измерениях по интервальным шкалам. Это ограничение связано с предположениями формальной модели, на которой базируется классический анализ факторный. Считают, что изучаемый социальный объект описывается набором признаков (n - общее число используемых признаков), т. е. информация о нем может быть представлена в форме матрицы данных "объект-признак" ( ), N = 1, 2, ..., n, где - значение j-го признака , на i-м объекте, N - общее число объектов. Каждому признаку поставим в соответствие признак , являющийся приведением первого признака к стандартной форме в результате следующего преобразования: , где и соответственно среднее значение и стандартное отклонение признака . Признаки , заданные в стандартной форме, имеют нулевое среднее и единичную дисперсию.
Основное предположение анализа факторного заключается в том, что каждый наблюдаемый признак можно выразить в виде суммы некоторых других, не наблюдаемых признаков (факторов), умноженных каждый на свой коэффициент. Эти коэффициенты принято называть факторными нагрузками. Значения факторных нагрузок, как правило, и являются результатом вычислительной процедуры анализа факторного, т. е. именно они служат основой для содержательных выводов.
Главными целями факторного анализа являются: сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных. Поэтому факторный анализ используется или как метод сокращения данных или как метод классификации.
№69 Методы анализа эмпирических данных. Кластерный и факторный анализ.
Страница: 1
Сообщений 1 страница 1 из 1
Поделиться12012-06-23 03:56:46
Страница: 1