Дисперсионный анализ (анова) - (analysis of variance) (Статистика) — процедура, используемая для проверки того, действительно ли можно обнаружить различия между целями нескольких групп, вероятно, в тех слоях населения, из которых выбраны эти группы. Например, три группы людей с разным уровнем образования, для которых ставится цель возможности повышения уровня зарплаты. Анова обеспечивает проверку статистически значимых разли чий в целях посредством деления всего многообразия наблюдени на два типа. Один — "внутригрупповое" разнообразие — есть разница внутри каждой группы выборки, а другой — "межгрупповое" разнообразие — разнообразие между групповыми целями. Если последнее во многом сравнимо с первым, то, скорее всего, цели слоев населения не равны. В основе применения дисперсионного анализа лежат следующие предположения: (а) каждая группа должна быть случайной выборкой из обычного населения (см. Нормальное распределение) , (б) разброс групп в населении одинаков. Однако методика удобна и может использоваться, даже если не обеспечены нормальность и предполагаемый равный разброс. Условие о проведении случайной выборки при этом, тем не менее, необходимо.
Регрессионный анализ - это метод установления аналитического выражения стохастической зависимости между исследуемыми признаками. Уравнение регрессии показывает, как в среднем изменяется у при изменении любого из xi, и имеет вид:
Если независимая переменная одна - это простой регрессионный анализ. Если же их несколько (п 2), то такой анализ называется многофакторным.
В ходе регрессионного анализа решаются две основные задачи:
* построение уравнения регрессии, т.е. нахождение вида зависимости между результатным показателем и независимыми факторами x1, x2, ..., xn.
* оценка значимости полученного уравнения, т.е. определение того, насколько выбранные факторные признаки объясняют вариацию признака у.
Применяется регрессионный анализ главным образом для планирования, а также для разработки нормативной базы.
В отличие от корреляционного анализа, который только отвечает на вопрос, существует ли связь между анализируемыми признаками, регрессионный анализ дает и ее формализованное выражение. Кроме того, если корреляционный анализ изучает любую взаимосвязь факторов, то регрессионный - одностороннюю зависимость, т.е. связь, показывающую, каким образом изменение факторных признаков влияет на признак результативный.
Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, xl,x2,...,xn; y должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида:
Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:
где т - число наблюдений;
j = a + b1x1j + b2x2j+ ... + bnхnj - расчетное значение результатного фактора.
Коэффициенты регрессии рекомендуется определять с помощью аналитических пакетов для персонального компьютера или специального финансового калькулятора. В наиболее простом случае коэффициенты регрессии однофакторного линейного уравнения регрессии вида y = а + bх можно найти по формулам.